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Motivations

There are quite a few types of infinite dimensional Lie algebras which can be

studied in depth, including:

◮ Witt algebra,

◮ Kac-Moody algebras,

◮ Automorphic Lie algebras,

◮ Polynomial algebras,

◮ Lie algebras of vector fields tangent to algebraic varieties.

All these infinite dimensional algebras have a faithful representation which

can be completely characterised by a finite set of structure elements because

they have a structure of a finitely generated module over a certain Noetherian

ring (such as a polynomial ring or a coordinate ring of an affine variety).

These algebras have very many applications and are interesting in their own

merit.



The space of symmetric squares of hyperelliptic curves: infnite-dimensional Lie algebras and

polynomial integrable dynamical systems on C4

Outline

◮ Universal space Sym2(V) of the symmetric square of hyperelliptic curves

and its coordinate ring.

◮ Vertical and projectable derivations (vector fields).

◮ The Newton derivations and Arnold’s problem of vector fields on

SymN(C).

◮ Lifting the Witt algebra of the Newton derivations to Sym2(V).

◮ Vertical derivations and extension of the Witt algebra.

◮ Two commutative vertical derivations and corresponding integrable

dynamical systems on C4.



Symmetric square of hyperelliptic curves

Let integer N ≥ 3. A hyperelliptic curve Vx of degree N in C2 we represent as

Vx = {(X ,Y ) ∈ C
2 | π(X ,Y ) = 0}

where

π(X ,Y ) = Y
2 −

N
∏

k=1

(X − xk )

and x = (x1, . . . , xN) are complex parameters. If xi 6= xj , ∀i 6= j then the curve

is non-singular and of genus g =
[

N−1
2

]

.

In C4+N = C2 × C2 × CN with variables (X1,Y1), (X2,Y2), (x1, . . . , xN) we

consider the affine variety

W = {(X1,Y1,X2,Y2, x1, . . . , xN) ∈ C
4+N |π(X1,Y1) = 0, π(X2,Y2) = 0}.

The group G = S2 × SN acts on W by the involution

(X1,Y1)←→ (X2,Y2)

and permutations of variables x1, . . . , xN .

The universal space Sym2(V) = W/G.



The coordinate ring of the symmetric square of hyperelliptic curves

The affine variety W corresponds to the ideal generated by

π(X1,Y1), π(X2,Y2):

JW = (π(X1,Y1), π(X2,Y2)) ⊂ C[X1,Y1,X2,Y2, x1, . . . , xN ].

The coordinate ring of W is

RW = C[X1,Y1,X2,Y2, x1, . . . , xN ]/JW

The coordinate ring of Sym2(V) = W/G is ring of invariants

RG
W = (C[X1,Y1,X2,Y2, x1, . . . , xN ]/JW )G ≃ (C[X1,Y1,X2,Y2, e1, . . . , eN ]/J

SN
W )S2 ,

where e1, . . . , eN are standard symmetric polynomials

e0 = 1, e1 = x1 + · · ·+ xN , e2 =
∑

0<i1<i2≤N

xi1xi2 , . . . , eN = x1x2 · · · xN

and the ideal

J
SN
W ⊂ C[X1,Y1,X2,Y2, e1, . . . , eN ]

is generated by (π(X1,Y1), π(X2,Y2))

π(X ,Y ) = Y
2 −

N
∏

k=1

(X − xk ) = Y
2 −

N
∑

k=0

(−1)k
ek X

N−k .



The coordinate ring of Sym2(C2) = (C2 ×C2)/S2.

Proposition

Let the group S2 be generated by the involution (X1,Y1)←→ (X2,Y2) then

C[X1,Y1,X2,Y2]
S2 ≃ C[u2, u4, vN , vN+2, v2N ]/(v

2
N+2 − u4v2N)

where

u2 = X1 + X2, u4 = (X1 − X2)
2, vN = Y1 + Y2,

vN+2 = (X1 − X2)(Y1 − Y2), v2N = (Y1 − Y2)
2

is a basis of the group invariants.

Corollary

A homogeneous polynomial map ξ : C2 × C2 7→ C5

ξ((X1,Y1), (X2,Y2)) = (u2, u4, vN , vN+2, v2N),

enables us to identify the manifold Sym2(C2) = (C2 × C2)/S2 with a

hypersurface in C5 given by the equation u4v2N − v2
N+2 = 0.



Grading

All our varieties can be made homogeneous if we assume the following

grading weights for the variables

|Xi | = 2, |Yi | = N, |xk | = 2, |uk | = |vk | = k .

If we introduce y2k = ek then

|ys| = s.

We can represent Sym2(V) as affine variety in the space CN+5 with

homogeneous G–invariant coordinates

u2, u4, vN , vN+2, v2N , y2, y4, . . . , y2N .

Namely

Sym
2(V) = V (I) ⊂ C

N+5.

Where

I ⊂ C[u2, u4, vN , vN+2, v2N , y2, y4, . . . , y2N ]

is the ideal defined in the following Proposition



Coordinate ring of the symmetric square of hyperelliptic curves

With W ⊂ CN+4 we associate its coordinate ring

RW = C[X1,X2,Y1,Y2, x1, . . . , xN ]�JW .

The coordinate ring of Sym2(V) is the G–invariant subring RG
W

⊂ RW .

Proposition
The ring RG

W
is isomorphic to the graded ring

RI = C[u2, u4, vN , vN+2, v2N , y]/I,

where y = (y2, y4, . . . , y2N) and the ideal I has Gröbner basis

P2N+4 = v2
N+2 − u4v2N ,

P2N+2 = vNvN+2 − u4

(

a2N−2 +

N−1
∑

k=1

(−1)k y2k a2(N−k−1)

)

,

P2N = v2
N + v2N − a2N + u2a2(N−1) −

N−1
∑

k=1

(−1)k y2k (2a2(N−k) − u2a2(N−k−1))− (−1)N 2y2N ,

P3N = vNv2N − vN+2

(

a2(N−1) +

N−1
∑

k=1

(−1)k y2k a2(N−k−1)

)

.

and the polynomials a2k = a2k (u2, u4) of weight |a2k | = 2k are generated by

4

(2 − u2t)2 − u4t2
=

∞
∑

k=0

a2k (u2, u4)t
k = 1+u2t+

1

4

(

3u2
2 + u4

)

t2+
1

2

(

u3
2 + u2u4

)

t3+· · · .



The universal space Sym2(V) of symmetric squares of hyperelliptic curves is a rational variety

⊛ Thus Sym2(V) = {(u2, u4, vN , vN+2, v2N , y) ∈ CN+5 |I = 0}.

If we allow ourself to divide by u4 = (X1 − X2)
2, than we can resolve the system of

equations P2N+4 = P2N+2 = P2N = P3N = 0 and explicitly express variables

y2N−2, y2N and v2N as elements of the ring C[u2, u4, vN , vN+2, y2, . . . y2N−4][u
−1
4

].

Moreover if we introduce a new variable vN−2 = vN+2u−1
4

, then

y2N−2, y2N , vN+2, v2N ∈ C[u2, u4, vN−2, vN , y2, . . . y2N−4].

It defines the polynomial map φ : CN+2 → CN+5 defined by

φ : (u2, u4, vN−2, vN , y2, . . . y2N−4) = (u2, u4, vN , vN+2, v2N , y)

vN+2 = u4vN−2, v2N = u4v2
N−2,

y2(N−1) = (−1)N−1

(

vNvN−2 − a2(N−1) −
N−2
∑

k=2

(−1)k y2k a2(N−k−1)

)

,

y2N =
(−1)N

2

[

v2
N + v2N − 2a2N + u2a2(k−1) −

N−1
∑

k=2

(−1)k y2k (2a2(N−k) − u2a2(N−k−1))

]

.

Thus, Sym2(V) is bi-rationally isomorphic to CN+2.

Theorem
The mapping φ is a bi-rational isomorphism

φ : CN+2 \ {u4 = 0} → Sym2(V) \ ({u4 = 0} ∩ Sym2(V)).



Short summary:

C[x1, . . . , xN ; X1,Y1,X2,Y2] C[x1, . . . , xN ; X1,Y1,X2,Y2]/JW

⋃ ⋃

(C[x1, . . . , xN ; X1,Y1,X2,Y2])
SN×S2 (C[x1, . . . , xN ; X1,Y1,X2,Y2]/JW )SN×S2

|≀ |≀

C[y2, . . . , y2N ; u2, u4, vN , vN+2, v2N ]/(syz) C[y2, . . . , y2N ; u2, u4, vN , vN+2, v2N ]/I

↓ ↓

C[y2, . . . , y2N , u2, u4, vN−2, vN ] C[y2, . . . , y2N−4, u2, u4, vN−2, vN ]

where syz = v2
N+2

− u4v2N = P2N+4, JW = (π(X1,Y1), π(X2,Y2)) and

I = (P2N+4,P2N+2,P2N ,P3N)

Sym2(V) = {(y2, . . . , y2N ; u2, u4, vN , vN+2, v2N) ∈ CN+5 |P2N+4 = P2N+2 = P2N = P3N = 0}.



Vertical and projectable derivations

Definition

◮ A derivation L of a quotient ringR = C[a1, . . . , an ; b1, · · · , bm]/J over

the ideal J is a derivation of the ringR = C[a1, . . . , an ; b1, · · · , bm] such

that L(J) ⊆ J.

◮ A derivation L is called vertical, if L(ai) ∈ J, i = 1, . . . , n.

◮ There is a canonical homomorphism j∗ : C[a1, . . . , an]→R. A derivation

L of R is called projectable with the projection L̂, if there exists a

derivation L̂ of the ring C[a1, . . . , an] such that

L(j∗(ai)) = j∗(L̂(ai)), i = 1, . . . , n.

Thus vertical derivations are represented by the vector fields of the form

L =

m
∑

i=1

Bi
∂

∂bi

, Bi ∈ R.

projectable derivations are of the form

L =

n
∑

i=1

Ai
∂

∂ai

+

m
∑

i=1

Bi
∂

∂bi

, Ai ∈ C[a1, . . . , an] ∩ R, Bi ∈ R.

In both cases we assume that L(J) ⊂ J.



Arnold’s problem of vector fields tangent to a discriminant.

The problem of construction of vector fields in CN , x1 + · · ·+ xN = 0 which

are tangent to the discriminant set

D = {(x1, . . . , xN) ∈ C
N |∆ = 0}, ∆ =

∏

i<j

(xi − xj)
2

have been solved by Arnold and his group in 1976-1980 (see V.Arnold

Singularities of Caustics and Wave Fronts 1996). D.Fuks proposed the

method to compute the vector fields using the convolution algebra. Then

V.Zakalyukin has shown that there exists a basis of vector fields such that the

derivations LA
0 . . . , L

A
N−2 acting on the standard symmetric polynomials results

in a symmetric matrix

L
A
k−2(em) = L

A
m−2(ek ).

Here we will give a new and short method to solve this problem, as well as

we prove Eilbeck’s conjecture that

L
A
k (∆) = (N − k)(N − k − 1)ek∆



The Newton derivations of RN = C[x1, . . . , xN ]
SN

Problem (Arnold): Find derivations LA
k

of the polynomial ring C[x1, . . . , xN ] such that

LA
k : C[x1, . . . , xN ]

SN 7→ C[x1, . . . , xN ]
SN

LA
k : (∆) 7→ (∆),

LA
k−2(em) = LA

m−2(ek ),

LA
k : (x1 + · · ·+ xN) 7→ (x1 + · · ·+ xN).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

Newton polynomials:

pk =
N
∑

i=1

xk
i , k = 0, 1, 2, . . .

p0 = N, p1 = e1 = x1 + · · ·+ xN , p2 = x2
1 + · · ·+ x2

N , . . .

The set p1, . . . , pN form a basis in the ring of SN invariants:

RN = C[x1, . . . , xN ]
SN ≃ C[e1, . . . , eN ] ≃ C[p1, . . . , pN ],

pN+k = pN+k (p1, . . . , pN), k = 1, 2, . . .

Generating function for Newton’s polynomials

N (t) =
∞
∑

k=0

pk tk =
N
∑

i=1

1

1 − txi

.



The Newton derivations of RN = C[x1, . . . , xN ]
SN

Definition
The derivations of the ring C[x1, . . . , xN ] of the form

L
0
q =

N
∑

i=1

x
q+1
i ∂xi

, q = −1, 0,1, . . . ,

are called the Newton derivations

Proposition

Newton derivations of C[x1, . . . , xN ]

◮ map symmetric polynomials into symmetric

L
0
k : C[x1, . . . , xN ]

SN 7→ C[x1, . . . , xN ]
SN , L

0
k (pn) = npk+n,

◮ give a faithful representation of the Witt algebra

[L0
m, L

0
n] = (n−m)L0

n+m,

◮ map the discriminant ideal into itself

L
0
n(∆) = γ0

n∆, γ0
n ∈ C[x1, . . . , xN ]

SN .



Derivations of RN = C[x1, . . . , xN ]
SN

Corollary

For all k , q ∈ N and n = 1, . . . , the polynomials pk , k = 0,1, . . . , are related

by
N
∑

m=1

m

(

p(k+m)

∂p(q+n)

∂pm
− p(q+m)

∂p(k+n)

∂pm

)

= (q − k)p(k+q+n).

Only the first N derivations L0
k , k = −1,0, 1, . . . ,N − 2 are linearly

independent over RN :

L
0
n =

N
∑

s=1

wn,sL
0
s−2, wn,s ∈ RN .

They are generators of a free left RN–module.



Generating derivations

It is convenient to introduce the generating derivation

L
0(t) =

∞
∑

k=0

t
k
L

0
k−1 =

N
∑

i=1

1

1− xi t

∂

∂xi

Then it is easy to verify that

L
0(t)(E(τ )) = −τE(τ )

N
∑

i=1

1

(1− xi t)(1− xiτ )

where E(τ ) =
∑N

k=0(−τ )
kek =

∏N
i=1(1− xiτ ). Thus

tE(t)L0(t)(E(τ )) = −tτE(t)E(τ )
N
∑

i=1

1

(1− xi t)(1− xiτ )

and therefore the derivations L̂A
k generating by the derivation

L̂
A(t) = tE(t)L0(t) =

N
∑

k=1

(−1)k
L̂

A
k−2t

k

yield a symmetric matrix L̂A
k−2(em) = L̂A

m−2(ek).

Derivations L̂A
k , k = −1,0, 1, . . . ,N − 2 have properties:

L̂
A
k−2 : RN 7→ RN ; L̂

A
k−2 : (∆) 7→ (∆); L̂

A
k−2(em) = L̂

A
m−2(ek).



Generating derivation for Arnold’s vector fields and Eibeck’s conjecture

The missing property (if we wish fit exactly Arnold’s derivation) is that

L̂A
k−2(x1 + · · ·+ xN) 6⊂ (x1 + · · ·+ xN).

It can be easily corrected: the generating derivation

LA(t) = L̂A(t) + N−1L0
−1(E(t))L0

−1 =
N
∑

m=2

(−1)mtmLA
m−2

generates Arnold’s derivations.

Conjecture (Eilbeck)
The discriminant polynomial ∆ =

∏

i<j (xi − xj )
2 is an eigenvector of Arnold’s

derivations
LA

k ∆ = γA
k ∆, k = 0, 1, . . . ,N − 2

where
γA

k = (N − k)(N − k − 1)ek , k = 0, 1, 2, . . .N − 2.

Proof:
N
∑

m=2

(−1)m tmLA
m−2∆ = LA(t)∆ = γA(t)∆,

where

γA(t) = t2(t2Ett (t)−2t(N−1)Et (t)+N(N−1)E(t)) = t2
N−2
∑

k=0

(−1)k tk (N−k)(N−k−1)ek .



Projectable tangent vector fields on Sym2(V)

Newton derivations

L0(t) =
∞
∑

k=0

tkL0
2k−2 =

N
∑

i=1

2

1 − txi

∂

∂xi

, L0
2q = 2

N
∑

i=1

x
q+1
i

∂

∂xi

, q = −1, 0, 1, . . . ,

do not represent tangent vector fields to Sym2(V)

L0
2q(JW ) 6⊂ JW .

They can be “corrected”:

Proposition
There is a unique lift of the Newton derivations L0

2k
sach that the vector fields

L2k , k = −1, 0, 1, . . . are:

tangent to Symm(V) : L2k(JW ) ⊂ JW ,
represent the Witt algebra: [L2k ,L2n] = 2(n − k)L2(n−k).

The derivations L2k are generated by

L(t) =
∞
∑

k=0

tkL2k−2 =
N
∑

i=1

2

1 − txi

∂

∂xi

+
m
∑

s=1

(

2

1 − tXs

∂

∂Xs
+

tYsN (t)

1 − tXs

∂

∂Ys

)

where N (t) is the generating function of the Newton polynomials

N (t) =
N
∑

i=1

1

1 − txi

.



Commuting vector fields of symmetric square of a curve.

Lemma
Let F (X ,Y ) be a twice differentiable function. Let Dk be defined as

Dk = ∂Yk
(F (Xk ,Yk ))∂Xk

− ∂Xk
(F (Xk ,Yk ))∂Yk

, k = 1,2.

and

L∗1 =
D1 − D2

X1 − X2

, L∗2 =
X2D1 − X1D2

X1 − X2

.

Then the vector fields L∗1,L∗2

◮ commute [L∗1,L∗2] = 0,

◮ map symmetric (X1,Y1)↔ (X2,Y2) functions into symmetric,

and functions F (Xk ,Yk ), k = 1, 2 are in their kernel space

(Li(F (Xj ,Yj)) = 0).

Lemma
Let all roots of the polynomial P(X ) be distinct and Jπ = (Y 2 − P(X )) be the

ideal in C[X ,Y ]. Then any derivation D of the quotient ring C[X ,Y ]/Jπ can

be represented in the form D = aD⋆, where a ∈ C[X ,Y ]/Jπ and

D
⋆ = 2Y∂X + ∂X (P(x))∂Y .



Commuting vector fields on Sym2(V).

Taking F (Xj ,Yj) = πj we obtain two commuting vector fields on Sym2(V) (and

derivations on the corresponding coordinate rings).

What is surprising is that L∗
N−4 = L∗1,L∗

N−2 = L∗2 are polynomial

derivations in variables u2, u4, vN−2, vN .

Example: For example in the case N = 5 we get

L∗
1 = 4u3∂u2

+ (5u2
2 + u4 + 2y4)∂u3

+ 8u5∂u4
+ (5u3

2 + 5u2u4 + 6u2y4 − 4y6)∂u5

L∗
3 = 4(u5 − u2u3)∂u2

− 4(u2
3 − u2u4 − u2y4 + y6)∂u3

+ 8(u3u4 − u2u5)∂u4
+

(u2
4 − 5u4

2 + 4u3u5 − 6u2
2y4 + 2u4y4 + 4u2y6)∂u5

Proposition

Derivations L0,L2,L4,L6 and L∗
1 ,L

∗
3 form a polynomial Lie algebra, which is

isomorphic to the polynomial Lie algebra of vector fields on the Jacobian of

genus 2.

Now it is not surprising that u2 provides algebra-geometric solution to the

KdV equation. Denoting u := 8u2, (L
∗
1)

k (u) = ∂k
x u,L∗

3(u) = ∂tu we get

8ut = uxxx − 6uux ,

128y4ux + uxxxxx − 10uuxxx − 20uxuxx + 30u2ux = 0.



Polynomial integrable dynamical systems in C4

Commuting vector fields⇔ compatible dynamical systems.

N = 3 – Elliptic case:

Y
2 = X

3 + λ4X + λ6.

Let L∗
−1f = f ′ and L∗

1 f = ḟ .

We get two dynamical systems:

u
′
2 = 2v1; u

′
4 = 4v3; v

′
1 = 1; v

′
3 = 3u2;

u̇2 = u2v1 − v3; u̇4 = −2(u4v1 − u2v3); u̇1 = −u2 + v
2
1 ;

u̇3 =
1

2
(3u

2
2 − u4 − 2v1v3).

They commute and have two common first integrals:

λ4 = v1v3 −
1

4
(3u

2
2 + u4);

λ6 =
1

4
(v2

3 − 2u2v1v3 + u
3
2 − u2u4 + u4v

2
1 ).



Polynomial integrable dynamical systems in C4

In the original coordinates (X1,Y1,X2,Y2) we get rational dynamical systems

X
′
1 = 2

Y1

X1 − X2

; Y
′
1 =

3X 2
1 + λ4

X1 − X2

;

X
′
2 = 2

Y2

X2 − X1

; Y
′
2 =

3X 2
2 + λ4

X2 − X1

;

Ẋ1 = 2
X2Y1

X1 − X2

; Ẏ1 =
X2(3X 2

1 + λ4)

X1 − X2

;

Ẋ2 = 2
X1Y2

X2 − X1

; Ẏ2 =
X1(3X 2

2 + λ4)

X2 − X1

.

which can be integrated in the elliptic functions:

X1 = ℘(z1 + z
0
1 ); Y1 = ℘′(z1 + z

0
1 ); X2 = ℘(z2 + z

0
2 ); Y2 = ℘′(z2 + z

0
2 ),

where z0
1 and z0

2 are arbitrary constants.

The cases N = 5,6 we have Sym2(V) ≃ Jac(V) and the corresponding

dynamical systems can be integrated in the Abelian functions of genus 2.

The case N = 5 corresponds to Dubrovin’s system on the Jacobian for g = 2.



Polynomial integrable dynamical system in C4 for N = 7.

The first nontrivial case is N = 7 (g = 3). The polynomial dynamical system

in C4 corresponding to the curve

Vλ = {(X ,Y ) ∈ C
2 : Y

2 = X
7 + y4X

5 + . . .− y14},

are of the form:

L∗
3u2 = v5, L∗

3u4 = v7,

L∗
3v5 = 3u

2
4 + 35u

4
2 + 42u

2
2u4 + 2y4(u4 + 5u

2
2)− 4y6u2 + y8,

L∗
3v7 = 14(3u

5
2 + 3u2u

2
4 + 10u

3
2u4) + 20y4(u2u4 + u

3
2)−

− 4y6(u4 + 3u
2
2) + 6y8u2 − 2y10.

L∗
5u2 = u2v5 −

1

2
v7, L∗

5u4 = u2v7 − 2u4v5,

L∗
5v5 = v

2
5 + 14u

5
2 − 18u2u

2
4 − 28u

3
2u4 − 8y4u2u4 + 2y6(u

2
2 + u4)−

− 2y8u2 + y10,

L∗
5v7 = 35u

6
2 − 63u

2
2u

2
4 + 35u

4
2u4 − 7u

3
4 + 5y4(3u

4
2 − 2u

2
2u4 − u

2
4)−

− 8y6(u
3
2 − u2u4) + 3y8(u

2
2 − u4)− y12.



These two compatible systems possess two common first integrals:

y12 = v5v7 − (7u
6
2 + 35u

4
2u4 + u

3
4 + 21u

2
2u

2
4)−

− y4(5u
4
2 + u

2
4 + 10u

2
2u4) + 4y6(u

3
2 + u2u4)−

− y8(3u
2
2 + u4) + 2y10u2,

y14 = −
1

4
v

2
7 − u4v

2
5 + u

7
2 + 21u

5
2u4 + 35u

3
2u

2
4 + 7u2u

3
4+

+ y4(u
5
2 + 10u

3
2u4 + 5u2u

2
4)− y6(u

4
2 + u

2
4 + 6u

2
2u4)+

+ y8(u
3
2 + 3u2u4)− y10(u

2
2 + u4) + y12u2.

These systems can be integrated in meromorphic functions on σ–divisor of

the hyperelliptic curve of genus g = 3 [recent paper by Victor Buchstaber and

Takanori Ayano]. They cannot be integrated in the Abelian 2g = 6 periodical

functions! A new class of functions is required.



Summary

Lie algebras of derivations of Abelian functions originally had been

constructed using the theory of multi–dimensional σ functions (Buchstaber,

Leykin). It was based on the analytic theory of hyperelliptic Jacobians and θ
functions (Dubrovin, Novikov). They did not use the algebraic geometry of the

symmetric powers of hyperelliptic curves.

We have shown that using the algebraic geometry of the symmetric powers of

hyperelliptic curves one can obtain differential equations integrable in terms

of Abelian functions and functions meromorphic on the σ–divisor without

using the properties of these functions for the construction of the equations.

We have drastically simplified and developed further Arnold’s theory of vector

fields tangent to the singularities (the discriminant) in his approach to the

problem of wave fronts and caustics. We have proved Eilbeck’s Conjecture

concerning the eigenvalues of Arnold’s vector fields on the discriminant.

We have constructed graded Lie algebras of vector fields, such that

projectable vector fields are tangent to the discriminant of the curve which is

a sub–manifold in the space of the curve parameters, while the vertical vector

fields are tangent to the curves with fixed parameters. We have effectively

solved a nontrivial problem of lifting of projectable vector fields from the

parameters space to the whole variety of the symmetric power of the curves

(explicit and pure algebraic construction of the Gauss-Manin connection).


